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A) Project goals on meaning making and fluency across disciplines 

 
Our team had two goals for this NSF IUSE Project.  The first, aligned with curriculum 
development, was to work across disciplines to produce a series of videos that encourage 
meaning making in mathematics and improve students’ understanding of challenging 
mathematics concepts in the physics, chemistry and biology undergraduate curriculum 
(especially in introductory courses).  During this work, our team had many conversations about 
the nature of meaning making and what it means to be able to think fluidly across disciplines.  
The table below provides examples of the shift from symbol manipulation to meaning making.  
As indicated by the last line of the table, this fluidity of thinking about mathematics can be 
related to moving up the hierarchy of Bloom’s Taxonomy.  
 
 
Examples of Shifts from Symbol Manipulation to Meaning Making 

Symbol Manipulation Meaning Making Skill 

How do I do this operation? When should I use this operation? Application to novel problems. 

Did I get the answer at the back of 
the book? 
 

What am I solving for and does the 
answer seem the right order of 
magnitude? 

Habit of mind of examining 
reasonableness of results. 
 

What steps are we expected to 
show to get full credit? 

Can I explain these symbols in 
words?  What would a graph of this 
look like? 

Moving fluently between 
representations. 
 

Remember Understand Apply 

 
 
We also had many in-depth conversations about the many ways in which mathematical thinking 
is important in the sciences.  One key example is the ability to develop graphical 
representations of experimental data and to interpret graphical representations to make 
appropriate inferences about the underlying phenomena.  The figure on the next page provides 
examples of desirable learning connections between experimental data, graphical 
representations and mathematical abstractions.
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Examples of Levels of Understanding in Integrating Science and Mathematics 
 

 

Building a graph 
from scientific data 

Attentiveness to graph 
axes (scale, units). 

Attentiveness to 
shape of data plotted 

Determining and 
understanding slope 
and first derivative 

Understanding area 
under the curve and 
integral 

Level 2 
Interpretation of 
graph and symbols 

Level 1 
Foundational step 
toward interpretation 

Level 0 
Connection to 
observations 

Connect progress of 
a phenomenon or 
an experiment to 
plotting of graph. 

Connect the 
graphical 
and the 
symbolic. 

Sign of curvature 
and connection to 
Second derivative 
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The second goal of our project was interwoven with the first.  It was to leverage the video 
project to deepen mathematicians’ and scientists’ understanding of each other’s disciplines, 
and to lay the groundwork for using it as a tool to promote the adoption of evidence-based 
teaching practices.  
 
To accomplish the goals of the project, eight colleagues representing four academic disciplines 
(mathematics, physics, chemistry and biology) met regularly over the course of nearly five 
years.  Although many of these meetings were dedicated to iteratively refining the video 
scripts, we became a community of practice that discussed a wide range of issues in science 
and mathematics education, as well as scientific and mathematical thinking more generally.  In 
addition to providing collegial support during challenging times, this work led to multiple 
publications and presentations.  For the videos themselves, individual team members took 
turns leading script development and production, but each video is a collective effort.      
 
 

B) Educational scholarship motivating the project 
 
Need for an interdisciplinary approach.  The traditional undergraduate curriculum treats 
mathematics and science as separate entities, but these disciplines are inherently 
interdependent.  Many have called for greater integration of the teaching of mathematics and 
science, more exposure to real world applications and more emphasis on ensuring that science 
majors develop a solid foundation in mathematics and the ability to reason quantitatively 
(AAAS, 2011; Bialek & Botstein, 2004; NRC, 2003, 2005a, b, 2013a; Rutherford & Ahlgren, 1991).  
The call for greater integration is not one-sided.  The Mathematical Sciences in 2025 report 
concludes, “Mathematical sciences work is becoming an increasingly integral and essential 
component of a growing array of areas of investigation in biology, medicine, social sciences, 
business, advanced design, climate, finance, advanced materials, and many more. This work 
involves the integration of mathematics, statistics, and computation in the broadest sense and 
the interplay of these areas with areas of potential application” (NRC, 2013b, p. 2).  Yet, the 
report also concludes, “Many mathematical scientists remain unaware of the expanding role for 
their field, and this incognizance will limit the community’s ability to produce broadly trained 
students and to attract more of them.  A community-wide effort to rethink the mathematical 
sciences curriculum at universities is needed” (NRC, 2013b, p. 2).   

Students’ challenges with mathematics in science. Discipline-based education research has 
consistently shown that undergraduate students, including those who have completed their 
lower division mathematics requirements, can solve procedural problems, but struggle with 
non-routine problems and with applying mathematics in their science courses (Pepper et al., 
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2012; Selden, Mason & Selden, 1989; Selden, Selden & Mason, 1994; Tariq, 2008).  For 
example, they have difficulty constructing and interpreting graphs (Potgieter, Harding & 
Engelbrecht, 2008).   Students also often do not understand the underlying assumptions that 
may need to be made before applying a mathematical strategy to a science problem, and they 
apply mathematical strategies that are inconsistent with a particular situation (Rebello et al., 
2007; Tuminaro & Redish, 2003).   

Specific challenges with rate of change.  Students have these difficulties across mathematics 
topics, but one topic that causes widespread difficulty at the college level, even among strong 
students at selective institutions, is rate of change (Masel, 2012; Pfannkuch & Brown, 1996; 
Sofronas et al., 2011).  Students often cannot correctly explain the meaning of terms in a 
differential equation (Rowland & Jovanoski, 2004).  They may fail to distinguish initial rate, 
instantaneous rate and average rate over a time interval (Cakmakci, Leach & Donnelly, 2006).  
They tend to confound “amount” and “rate of change of amount” as well as constant and 
variable rates of change (Rowland & Jovanoski, 2004).  Many also struggle with graphical 
aspects; for instance with kinematics graphs, failing to distinguish between distance, velocity 
and acceleration, and on reaction kinetics graphs, failing to distinguish between plots of rate 
versus time, rate versus concentration, and concentration versus time (Beichner, 1994; 
Bezuidenhout, 1998; Cakmakci, Leach & Donnelly, 2006).  Consistent with this extensive body of 
research, surveys of our own students reveal that they also have many misunderstandings 
about rate of change after they have completed the first-year calculus sequence, such as the 
difference between average and instantaneous rates of change.   

Need for a focus on meaning making.  Students’ errors in mathematics are often systematic and 
due to the difficulties of shifting from one way, or “paradigm,” of thinking to another (Rowland 
& Jovanoski, 2004).  An essential paradigm shift is from thinking of mathematics as symbol 
manipulation to mathematical meaning making, which includes helping students develop 
knowledge of when to use an operation, the ability to apply mathematics to novel problems, 
the habit of mind of examining the reasonableness of results, a feel for numbers (such as orders 
of magnitude), fluency to move between symbolic and other (such as verbal and graphical) 
representations, and the belief that mathematics is relevant in real world and research contexts 
(Schoenfeld, 1992).  The transition from symbol manipulation to meaning making is difficult 
because of students’ prior experiences in mathematics classes that emphasize procedural 
knowledge over conceptual understanding.  Students are even willing to deny their physical 
experience when it conflicts with what they believe to be the right answer (Williams, 1991).  
Therefore efforts to promote conceptual change in students should be tied to the overarching 
goal of encouraging meaning making.   
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C) Rate of change videos–orientation and tips for use in STEM classes 
 
Our work is inspired by the discipline-based educational research findings discussed in the 
previous section.  In summary, the traditional undergraduate curriculum treats mathematics 
and science as separate entities, but these disciplines are inherently interdependent.  Many 
have called for greater integration of the teaching of mathematics and science, more exposure 
to real world applications and increased emphasis on ensuring that science majors develop a 
solid foundation in mathematics and the ability to reason quantitatively.  One crosscutting 
concept that causes widespread difficulty among students in high school, college and 
undergraduate courses is rate of change.  Examples of rate of change in introductory science 
courses are velocity and acceleration in physics, reaction kinetics in chemistry and population 
growth in biology.  The From Symbol Manipulation to Meaning Making project sought to 
increase curricular integration of these topics by bringing together an interdisciplinary team of 
instructors of mathematics, physics, chemistry and biology undergraduate courses.   
 
The team collaborated to develop videos for five themes (mathematics, physics, chemistry, 
biology and current research) on four rate of change subtopics (meaning of terms in differential 
equations, average versus instantaneous rate of change and sign, moving between graphical 
representations, and integration as accumulation).  The resulting videos are organized into a 
matrix on the project website.  Navigate down the columns to see all the videos on one theme 
(e.g. physics) or across a row to see all the videos for one subtopic (e.g. average versus 
instantaneous rate and sign).   
 

 
 
The four rate of change subtopics were chosen for both their relevance in STEM and because of 
the specific learning challenges associated with them. 
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● Differential Equations: Meaning of Terms–Understanding differential equations entails 
paying close attention to the various terms and recognizing the meaning of each.  
Potential pitfalls include confusing parameters with initial conditions and failing to 
recognize the relationship between the underlying function and its first and second 
derivative.  The videos explain initial conditions in differential equations (mathematics), 
and explore motion along two axes in a basketball toss (physics), the order of chemical 
reactions (chemistry), the basic parameters of population growth (biology), and the 
clearance of medications from the blood (current research).    
 

● Average Versus Instantaneous Rate of Change and Sign–Understanding rate of change 
requires attention to both the magnitude or absolute value of the slope and the sign of 
the rate of change simultaneously.  Initial, instantaneous and average rate of change 
must be distinguished symbolically, on graphs and using appropriate calculations for 
each.  Learners may master the calculations but still struggle to explain what is 
happening in words.  The videos explore average versus instantaneous rate and sign in a 
horizontal ball toss (mathematics), running on a track (physics), the chemical reactions 
of a hydrogen car (chemistry), yeast fermentation in bread (biology), and the separation 
of RNA molecules on a gel (current research).  
 

● Moving Among Graphical Representations–Fluency with graphical representations 
entails being able to glean information from different kinds of graphs by plotting the 
same data in different ways, as well as being able to move between the graph of a 
function and the graphs of its first and second derivative.  In the videos, scenarios about 
water in rain barrels (mathematics), a mass on a spring (physics), tie dye shirts 
(chemistry), populations of wolves and moose (biology), and stellar flares (current 
research) illustrate the usefulness of fluency with representations and help make it 
more intuitive. 
 

● Relationship Between Rate and Accumulation–A core principle in calculus (the 
fundamental theorem of calculus) is that the accumulation of a quantity (determined by 
integration) and the rate of change in the accumulation of the quantity (determined by 
differentiation) are interrelated.  It is common for learners to confound “amount” and 
“rate of change of amount,” and to fail to recognize the relationship between 
integration and the area under a graph.  To explore these relationships, travel, volumes 
of solids and more (mathematics), skateboarding (physics), gas chromatography 
(chemistry), cell cycles and flow cytometry (biology), and the fate of pharmacological 
substances in the body (current research) are topics explored in the videos. 
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Video Links 
Mathematics Playlist 
 Differential Equations: Meaning of Terms - This video introduces how differential equations 
are used to model physical processes.  It distinguishes between particular and general solutions and 
explains the importance of the initial condition.  
 Average Versus Instantaneous Rate and Sign - Explore the distinction between average 
and instantaneous rates of change in a horizontal ball toss and understand the relationship between 
the observed motion and the calculations of the ball's velocity. 
 Moving Among Graphical Representations - The graph of a function and the graph of its 
derivative provide different information and it is useful to be able to move between them.  This video 
explores the example of water flowing in and out of a rain barrel. 
 Relationship Between Rates and Accumulation - The integral can compute the amount of 
any quantity that accumulates at a known rate.  This video explains why integration can be applied in 
such a wide range of contexts. 
 
Physics Playlist 
 Differential Equations: Meaning of Terms -  This video explores the rates describing a 
basketball’s motion.  It demonstrates how to separately analyze the distance and height and how to 
derive the differential equations and perform unit analysis. 
 Average Versus Instantaneous Rate and Sign -  You ran all the way around the track and 
yet your average velocity is zero.  How can that be?  This video explores the distinction between 
average and instantaneous rates of change to explain that and more. 
 Moving Among Graphical Representations -  This video explores a chaotic pendulum on a 
spring problem and the relationship between kinetic and potential energy.  Learn how motion relates 
to the total energy of the system and relate the behavior to the graphical representations. 
 Relationship Between Rates and Accumulation -  Come along for the (skateboarding) ride 
to learn about the work-energy theorem, displacement vectors, dot products and integration as 
accumulation. 
 
Chemistry Playlist 
 Differential Equations: Meaning of Terms - How is the rate law, including the reaction order 
and the rate constant, for a chemical reaction determined from experimental data?  Relate what is 
happening at the molecular level to the differential equation.  
 Average Versus Instantaneous Rate and Sign - This video explores core concepts in 
reaction kinetics, including the relationship between rate and sign, in the context of the chemical 
reaction that powers a hydrogen fuel cell car. 
 Moving Among Graphical Representations - Tie dye has a lot to do with chemical reaction 
kinetics because fiber-reactive dyes covalently bond to the fabric fibers.  Concentration versus time 
and rate versus concentration graphs are useful for understanding how to optimize the process.  
 Relationship Between Rates and Accumulation  -  Gas chromatography separates 
molecules based on how attracted they are to the stationary phase, but why is the output a curve 
and what does the area under the curve represent? 
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Biology Playlist 
 Differential Equations: Meaning of Terms - Under certain conditions, the growth rate of a 
population of animals, such as seals, may be exponential.  This video considers the population 
growth rate and the discrete and continuous equations to model the growth. 
 Average Versus Instantaneous Rate and Sign - The video explains how the logistic growth 
model and the carrying capacity are relevant concepts in understanding the role of yeast in the 
process of fermentation to make bread dough rise. 
 Moving Among Graphical Representations - Relationships between populations of 
predators (such as wolves) and prey (such as moose) can depend on many factors, and different 
graphical representations can provide unique insights into the relationships. 
 Relationship Between Rates and Accumulation - Flow cytometry provides information 
about where cells are in the cell cycle, but what exactly do those graph peaks mean, and how can 
you estimate the ratio of the areas under the curves when the computer is acting up? 
 
Current Research Playlist 
 Differential Equations: Meaning of Terms -  The drug clearance rate is an important clinical 
parameter of a drug treatment.  This video discusses chemical reaction kinetics and the half-life in 
the context of the elimination process of a pharmaceutical from the body. 
 Average Versus Instantaneous Rate and Sign - How is the derivative relevant to the origin 
of life?  This video highlights how seemingly unrelated math concepts can make it possible to track 
how RNA molecules evolve in a test tube. 
 Moving Among Graphical Representations - This video explores the graphical 
representations relevant to determining how much energy is released in stellar flares, which is part 
of the search for life on other planets. 
 Relationship Between Rates and Accumulation -  This video describes how integration 
makes it possible to understand how drugs are cleared from the body, and how the medication's 
clearance rate and plasma level may be altered during pregnancy.  
 
 
The videos depict diverse, empowered learners in a wide variety of contexts that showcase the 
ubiquity of rate of change concepts in science and mathematics coursework, daily life and 
cutting-edge scientific research.  They are intended as short (approximately 5-10 minutes) 
supplements to the curriculum to provide conceptual underpinnings that are often absent from 
the traditional curriculum.  They can be used in class, with problem assignments or as study 
resources. 
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D) Checklist to guide the design of educational videos 
 
As the team worked together to develop the videos, it became clear that, although a large body 
of education research is available to inform the design of instructional videos, it is fragmented 
across educational disciplinary traditions and STEM fields, and the practical lessons are not 
readily accessible.  Our experience with the literature and with video development inspired us 
to synthesize the relevant literature and translate it into recommendations for practice in the 
form of a user-friendly instrument.   The development of the instrument and the supporting 
scholarship is described in the following peer-reviewed paper.  The figure below provides an 
overview and the printable checklist instrument is provided on the following page. 
  
Seethaler, S., Burgasser, A. J., Bussey, T. J., Eggers, J., Lo, S. M., Rabin, J. M., Stevens, L. & Weizman, 
H. (2020). A research-based checklist for development and critique of STEM instructional videos. Journal 
of College Science Teaching, 50(1), 21-27. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 

Vid eo Instrument Here  



 

10 
 

Checklist for Development and Critique of Instructional Videos 
 

� Concepts.  The video clarifies the concepts it covers and makes links to 
students’ prior knowledge, including misconceptions. 
 

� Logic.  Each successive concept in the video or video series builds on the 
previous ones without gaps in logic or errors. 
 

� Story.  A hook (e.g. problem or question) begins a narrative or explanatory arc 
that culminates in a resolution.  
 

� Language.  Tone is conversational and disciplinary terms and notation are 
appropriately defined and consistently used. 
 

� Visualizations.  Demonstrations, animations and other visuals clarify concepts 
and make the invisible visible. 
 

� Signals.  Cues (e.g. arrows, highlights and verbal guidance) help students move 
between physical phenomena, graphs, equations, symbols and other 
representational forms. 
 

� Synchronization.  Graphics and narration are mutually reinforcing and well 
synchronized. 
 

� Segmentation.  Judicious duration, natural pauses and reiteration emphasize 
important points and help parse the content for the learner.  
 

� Streamlining.  Presentation avoids overburdening learners with distractions or 
simultaneous processing of different verbal (conflicting text and spoken) 
information.   
 

� Relevance.  Presentation tone and style are age-appropriate and motivating, and 
the situation or context is meaningful for the target audience. 
 

� Rapport.  Characters/audience are depicted/treated as empowered learners, 
and any interactions between individuals model respectful, helpful behavior.  
 

� Accessibility.  The video is of sufficient aesthetic and technical quality to meet 
the learning objectives and it employs Universal Design Principles for maximum 
accessibility. 
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E) Critique of the treatment of rate of change concepts in textbooks 

 

Assembling the literature review for the original NSF IUSE proposal drew attention to the 
shortcomings of the treatment of rate of change concepts in traditional curriculum materials.  
In the chemistry introductory curriculum, students encounter rate of change concepts in 
reaction kinetics, a topic that many students find challenging.  This inspired a careful 
investigation of how introductory chemistry textbooks treat rate of change concepts in reaction 
kinetics.  The treatment is highly variable across first-year texts but we identified many 
potential sources of confusion. 

 

Analyzing General Chemistry Texts’ Treatment of Rates of Change Concepts in Reaction 
Kinetics Reveals Missing Conceptual Links 

Abstract.  Change over time is a crosscutting theme in the sciences that is pivotal to reaction 
kinetics—an anchoring concept in undergraduate chemistry—and students’ struggles with rates 
of change are well documented. Informed by the education scholarship in chemistry, physics, 
and mathematics, a research team with members from complementary disciplinary 
backgrounds developed a rubric to examine how 10 general chemistry textbooks used by top 
producers of American Chemical Society-approved chemistry baccalaureates treat rates of 
change concepts in reaction kinetics. The rubric is focused around four categories of students’ 
challenges that emerged from the literature review: (i) Fluency with graphical representations; 
(ii) Meaning of sign of rate of change; (iii) Distinction between average and instantaneous rates 
of change; and (iv) Connections between differential and integrated forms of the rate laws. The 
analysis reveals interesting patterns but also variability among the texts that, intriguingly, is not 
explained by the degree to which a text is calculus-based. An especially powerful aspect of the 
discipline-based education research lens is its ability to reveal missing conceptual links in the 
texts. For example, the analysis makes apparent specific gaps in the supports needed to help 
students move between representational forms (words, symbols, graphs) in the development 
of the differential form of the rate laws. The paper discusses the implications of the findings for 
chemistry instructors and chemical education research. 
 
 
Seethaler, S., Czworkowski, J., & Wynn, L. (2018). Analyzing general chemistry texts’ treatment of rates 
of change concepts in reaction kinetics reveals missing conceptual links. Journal of Chemical Education, 
95(1), 28-36. 
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F) Interdisciplinary conversations in a faculty learning community 

 
We wrote a paper to describe the discussions of our interdisciplinary group of scientists and 
mathematicians during our multi-year curriculum project collaboration.  Our goal was to 
highlight subtle differences between concepts that are nominally “the same” across multiple 
disciplines, the confusions that both students and experts can encounter about them, and the 
importance of STEM instructors being aware of them. Science instructors may expect that the 
mathematics their students learn in prerequisite math courses will be in a ready-to-use format 
adapted to its applications in science, but this may not be the case. Likewise, mathematics 
instructors may incorrectly assume that scientific applications of calculus will use the same 
conceptual structures, notation, and terminology presented in calculus texts. The more STEM 
educators know about such disciplinary cultural differences, the more they can help their 
students to anticipate confusions and make connections.  
 
 
Interdisciplinary Conversations in STEM Education: Can Faculty Understand Each Other Better 
than Their Students Do? 
 
Abstract. Rate of change concepts from calculus are presented and applied rather differently in 
college mathematics, physics, biology, and chemistry classes. This is not simply a matter of 
pedagogical style but reflects real cultural differences between these disciplines. We describe 
the efforts of our interdisciplinary collaboration to understand and reconcile these differences 
as we designed and discussed instructional videos for students. We summarize our 
conversations about terminology, notation, functions, rates, units, and sign conventions across 
the disciplines. We present some strategies that enabled us to communicate effectively, resolve 
confusions and reach shared understandings. Our work has implications for others involved in 
collaborative interdisciplinary projects and for STEM educators.  
 
 
Rabin, J. M., Burgasser, A., Bussey, T. J., Eggers, J., Lo, S. M., Seethaler, S., Stevens, L. & Weizman, H. 
(2021). Interdisciplinary conversations in STEM education: can faculty understand each other better than 
their students do?. International Journal  
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I) Appendix:  Collection of problems for use in learning and assessment 

 
General/Application 
1) A machine makes widgets at a rate that depends on the ambient temperature in an 

open-air factory.  Assuming you have an accurate hourly weather report for the next 
seven days and a table that lists rate of widget production by temperature.   
i) What mathematical procedure(s) could you apply to determine how many 

widgets your machine can produce in the next week? 
ii) Could you get a quick rough estimate?  How? 

 
 
Meaning 
1) In general, what does a derivative tell you? 

 
2) In general, what is the purpose of integration? 

 
3) What does it mean to solve a differential equation?  Why would you need to? 

 
4) In each case, what does the slope of a graph of y versus x represent? 

i) If y is the position of a moving car and x is time; 
ii) If y is the odometer (mileage) reading of a car and x is the amount of fuel in 

the gas tank; 
iii) If x is the price of a widget and y is the number that a store can sell at that 

price; 
iv) If y is the volume of a balloon and x is its radius; 
v) If y is the net growth rate of a rabbit population and x is the number of wolves 

in their environment. 
 

5) In each case, what does the area under the curve of the graph of y versus x 
represent? 
i) If y is the velocity of a moving car and x is time; 
ii) If y is the force acting on an object and x is its position along a number line; 
iii) If x is on an IQ scale from 0 to 200 and y at location x is the number of people 

with IQ scores within a small distance ∆𝑥 of x, divided by ∆𝑥; 
iv) If y is the density of cars (cars per mile) at a location x miles along a highway. 

 
 
Related to Specific Videos 
Mathematics 
(Differentiation) 



 

19 
 

 
 
(Integration) 
1.  The density of bacteria at a point on a petri dish depends only on the distance r of 
that point from the center. Suppose this density (cells per square centimeter) is given by 
a function f(r), with r in centimeters.  

i) How would you compute the total number of bacteria within a circle of radius R 
about the center?  
ii) Some other students have suggested the following formulas for this number. Do 
you agree with any of them, and why? 

 a) 𝜋𝑅!𝑓(𝑅) 
 b) ∫ 𝑓(𝑟)𝑑𝑟"

#  

 c) ∫ 𝜋𝑟!𝑓(𝑟)𝑑𝑟"
#  

 d) ∫ 2𝜋𝑟𝑓(𝑟)𝑑𝑟"
#  

 e) ∫ 2𝜋𝑅𝑓(𝑟)𝑑𝑟"
$"  

 f) Something else? 
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Physics 
(Signs) 
 
1.  A car is driving along the x axis when the driver suddenly applies the brakes. What 
additional information do you need to determine whether the car’s acceleration is 
positive or negative? More than one answer may be correct. 

a) Whether the car’s x coordinate is positive or negative 
b) Whether the car’s velocity is positive or negative 
c) Whether the car’s x coordinate is increasing or decreasing 
d) None: the acceleration must be negative 
e) Whether the force acting on the car is to the left or the right 
 

Please explain your choice. 
 
(Integration--Skateboarding) 
1) In which case would you expect an increase of speed? (Where v is velocity and F is 
force.) 

a)  v parallel to F 
b) v antiparallel to F 
c) v perpendicular to F 
d) doesn't depend on direction 

 
2) In which case would you expect an increase of kinetic energy?  (Where v is velocity 

and F is force.) 
a) v parallel to F 
b) v antiparallel to F 
c) v perpendicular to F 
d) kinetic energy is conserved, so it can't increase or decrease 

 
3) In which case would you expect a decrease of kinetic energy?  (Where v is velocity 

and F is force.) 
a) v parallel to F 
b) v antiparallel to F 
c) v perpendicular to F 
d) kinetic energy is conserved, so it can't increase or decrease 

 
4) In which case is C = A dot B positive (where A and B are vectors)? 

a) A parallel to B 
b) A antiparallel to B 
c) A perpendicular to B 
d) it depends on the magnitude of A and B 
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5) In which case is C = A dot B equal to zero (where A and B are vectors)? 
a) A parallel to B 
b) A antiparallel to B 
c) A perpendicular to B 
d) it depends on the magnitude of A and B 

 
6) When the skateboarder was moving in a circle, in which direction was his friend 

applying a force on him? 
a) directed toward center of circle 
b) directed away from center of circle 
c) directed tangent to circle in same direction of v 
d) directed tangent to circle in opposite direction of v 

 
7) Why was there no work done on the skateboarder when he was moving in a circle? 

a) his speed didn't change 
b) his velocity didn't change 
c) his direction of motion didn't change 
d) there was no force applied to him 

 

8) If we want to increase the kinetic energy of the person on the skateboard, how 
should we push it? 
a) can only push exactly in direction of motion 
b) can only push exactly perpendicular 
c) can only push exactly opposite direction 
d) can push in wide range of directions, as long as there is a component in direction 

of motion 
 
9) You have force F that depends in a complicated way on position x. How would you 

compute the work done on an object by that force over a displacement D? 
a) W = F(D)⋅D 
b) W = (F(D)-F(0))⋅D 
c) W = ∫ 𝐅(x) ⋅ d𝐱%

#    
d) W = (dF(x)/dx)⋅D 
e) W = F(D)⋅∫dx 
f) W =∫ d𝐅(x) ⋅ d𝐱%

#    
g) W = ∫ d𝐅(x) ⋅ 𝐃%

#   
 
10) Two students are trying to figure out how to compute the change of kinetic energy of 

an object that has been acted on by a force that depends on position. The notation 
<F> means average force. 

 
Student A: Change in kinetic energy is work, and work is force dot displacement, so I 
would just use the average force and then take the dot product with the 
displacement, like this: W=<F>⋅D 
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Student B: Hmm, I'm not sure that's right, doesn't the problem say force changes 
with position? I think we need to compute a little bit of work along each step, then 
add all that work up. Isn't that an integral? 
Student C: Yeah, it's an integral. I think we integrate the magnitude of the average 
force over position, like this: W = ∫ < F > dx%

#
  

Student A: What happened to the dot product? 
Student B: Yeah, something  isn't right here. A little work looks like dW = F(x)⋅dx, so 
I think the integral might be W = ∫ 𝐅(x) ⋅ d𝐱	%

#
  

Student A: Doesn't that end up being the same thing wrote I did the first time? 
 
Which students are thinking correctly about this, and which students are not? Why? 
Are there special cases in which one or more students might be actually be right? 
 
 

Chemistry 
(Tie dye--Graphing) 
1) If the graph of reactant concentration versus time for a chemical reaction is linearly 
decreasing, what does that say about the rate versus concentration? 

a) The rate is increasing linearly. 
b) The rate is increasing non-linearly. 
c) The rate is constant. 
d) The rate is decreasing linearly. 
e) The rate is decreasing non-linearly. 

 
(Bromine reaction--Differential equations) 
2) Which of the following about the rate constant for a chemical reaction is false. 

a) It is the slope in the differential form of the rate law. 
b) It is dependent on the reactant concentration. 
c) It is characteristic of a particular chemical reaction. 
d) It is dependent on the presence of a catalyst. 
e) It is dependent on temperature. 

 
 
Biology 
(Average and Instantaneous rates of change--Yeasts) 
1.  This question refers to Figure 2a in the paper:  
https://pollardlab.yale.edu/sites/default/files/files/bibliography/223.pdf 
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i) Which line has the higher average rate of change? Red or blue? 
iii) For the blue line, which point has the highest instantaneous rate of change? 5, 

10, 50, or 100 mM? 
 
 
(Flow Cytometry--Integration)  
2. This question refers to Figure 1e in the paper: 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048294 

 
i) What is the meaning of “area under the curve” here? 

 


